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Our analysis so far has been for direct current (DC) circuits, where
voltages and currents are assumed to be constant with time

To look at the effect of capacitors and inductors, we will have to
perform alternating current (AC) analysis

With AC circuit analysis, we assume that a sinusoidal signal with a
radian frequency of  is applied, and we solve for the circuit’s
response

Circuit

V
0
si

n
(

t)

Notes: 2 radians = 360
 has units of radians/sec

So, t has units of radians

We can perform our calculations using radians or degrees as long as
we are careful

sin( 45 ) sin
4

So, and are equivalentt t    

Also note:  = 2 f where f is frequency in Hz

Hertz (Hz) is in cycles per second, and each cycle is 360 or 2 radians

When a signal or power are applied to a circuit, oftentimes transients
occur. These transients typically die out quickly, and after they have
died out, it is said that the circuit is in steady state.
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For example, if we applied V0 sin(t) to a circuit at t=0, the current
might look like the following:

Transient Steady State
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• When we analyze a circuit, we assume that it is in
steady state

• If we know how a circuit responds as a function of
frequency, we can determine its response to any
waveform using Fourier Analysis

• If a sinusoidal signal is fed to a linear circuit, all
voltages and currents in that circuit will be sinusoids
that are scaled in magnitude and shifted in phase
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sin(t)
sin(t +/4)

If a sinusoid is shifted in time,
there will be a corresponding
shift in phase

Example: what would be the
phase shift if a 10 MHz
sinusoid were delayed by
12.5 nsec (nanoseconds or
10-9 sec)?

 7sin( ) sin 2 10Original sinusoid, t t 

  sinDelayed sinusoid, dt t 

   7 9 7 7sin 2 10 12.5 10 sin 2 10 0.25 sin 2 10
4

= =t t t        

Phase measurements are often used as a means to measure distance
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EXAMPLE: EFFECT OF PHASE SHIFTEXAMPLE: EFFECT OF PHASE SHIFT
MULTIPATH INTERFERENCE

B
u

ild
in

g

Radio XMTR

You, in
your car

The signal delivered by your antenna to your radio is
the sum of the direct signal and any multipath signals
The multipath signals can often be as strong as the
direct signal

Numerical Example: If you are listening to WHEB
(100.3 MHz) and there is a strong multipath signal (as
strong as the direct signal), how will that multipath
affect reception if the multipath signal travels a path
that is 1.5 meters longer than the direct signal?

    6 6
0 0sin 2 100.3 10 sin 2 100.3 10antenna dV V t V t t     

The multipath signal will arrive 1.5 m/3x108 m/sec = 5.0
nsec after the direct signal.

  62 100.3 10The phase shift caused by the delay is: dt     

   sin sin 0For any : No signal receivedt t     

EXAMPLE: EFFECT OF TERRAIN MULTIPATHEXAMPLE: EFFECT OF TERRAIN MULTIPATH
ON LANDING SYSTEM PERFORMANCEON LANDING SYSTEM PERFORMANCE

The received signal will be the sum of 4 sine waves,
each with a different amplitude and phase



10/20/2009

4

PHASE DIFFERENCE BETWEEN VOLTAGE & CURRENTPHASE DIFFERENCE BETWEEN VOLTAGE & CURRENT

Measuring the phase difference between voltage
and current

Example: Setup to measure the phase of the
voltage across and the current through a
resistor

Note: because of its high input impedance,
the oscilloscope will not affect the
operation of the circuit

The same current, i, will flow through
both resistors

The voltage across R1 (Channel A) is
proportional to i. The voltage across R2
(Channel B) is the voltage across R2

For resistors, there is no phase shift
between voltage and current

PHASE DIFFERENCE BETWEEN VOLTAGE & CURRENTPHASE DIFFERENCE BETWEEN VOLTAGE & CURRENT
ON A CAPACITORON A CAPACITOR

In this case, the current leads the voltage by /2 or 90

Current Voltage

In words: when the voltage is changing fastest, the current is at its
maximum- when the voltage is not changing, the current is at zero

cos( )
( ) cos( ), sin( )If then

dV d t
V t t i C C C t

dt dt


      

In math:

Note: the measurement setup causes the current
waveform to be inverted
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Resistance is the ratio of voltage to current: R=v/i

If a circuit is said to be purely resistive, it is assumed that voltage and
current are in phase

Impedance, Z, is also the ratio of voltage to current, but it accounts
for the phase relationship between voltage and current

Example: calculate the impedance of a capacitor. Start by assuming a
sinusoidal voltage across the capacitor => vc=V0cos(t)

0
0

cos( )
sin( )For this applied voltage cdv dV t

i C C CV t
dt dt


    

0

0

cos( ) cos( ) 1
90

sin( ) cos( 90 )
So,

V tv t
Z

i CV t C t C

 

    
     

   

The 1/(C) gives the ratio of the magnitudes of v to i, and the -90
gives the phase relationship between v and i

ACCOUNTING FOR PHASE SHIFT USING CIRCUIT EQUATIONSACCOUNTING FOR PHASE SHIFT USING CIRCUIT EQUATIONS

vx

Apply KCL at the node containing vx:

 2 1 11

1 1 2 1 2

0 0 0
N

x xx x
j

j

R v V R vv V v
i

R R R R

 
     

 1 2 2 1 1: 0Multiply both sides by x xR R R v V R v  

 2 1 1 2Rearranging: xv R R V R 

2

1 1 2

If we call the gain of this circuit , then Gain =xv R

V R R

 
 

 

Before going to a circuit equation that
involves phase, let’s go over a DC circuit
analysis example we worked before that
does not involve phase
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ACCOUNTING FOR PHASE SHIFT USING CIRCUITACCOUNTING FOR PHASE SHIFT USING CIRCUIT
EQUATIONSEQUATIONS (2)

vx

V
S
co

s(


t)

Again, apply KCL at the node containing vx:

Now, look at a circuit with an AC source:

Recall that for a linear circuit, if the input is a
sinusoid, all currents and voltages in the circuit
will be sinusoidal at the same frequency

1 2

cos( ) cos( ) cos( )
0x S xv t V t v t

R R

      
 

The magnitude of the unknown voltage is vx, and its phase is 

 2 1 2cos( ) cos( )Rearranging: x SR R v t R V t    

The only way for this equality to hold is if =0. This is the expected
result, since there is nothing in this circuit to shift the phase of the
current with respect to the voltage

   
2 2

2 1 2 1

cos( )
cos( ) S S

x x

R V t R V
v t v

R R R R


   

 

ACCOUNTING FOR PHASE SHIFT USING CIRCUITACCOUNTING FOR PHASE SHIFT USING CIRCUIT
EQUATIONSEQUATIONS (3)

V
S
co

s(


t)

Again, apply KCL at the node containing vx:

cos( ) cos( ) cos( 90 )
0

1
x S xv t V t v t

R
C

    



    
 

We are summing currents here, and the -90 accounts for the phase
shift between voltage and current in the capacitor

vx

 
1

cos( ) cos( ) cos( 90 ) 0x S xv t V t Rv t
C

    


      

Rearranging our equation above:

We can solve problems like this one using trig identities, and we will
use a shorthand notation to make this easier

The capacitor in this circuit will introduce
phase shift
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ADDING SINUSOIDS OF DIFFERENT MAGNITUDES &ADDING SINUSOIDS OF DIFFERENT MAGNITUDES &
PHASESPHASES (EE’S DO THIS A LOT)

Start by applying a trig identity to cos(t+):

cos( ) cos( )cos( ) sin( )sin( )t t t       

This means that we can express cos(t+) in terms of sin(t) and
cos(t) only: cos() and sin() are constants

Example

cos( 60 ) cos( ) cos(60 ) sin( )sin(60 )

0.5cos( ) 0.866sin( )

t t t

t t

  

 

     

 

Significance: sin & cos are orthogonal functions (separated by 90 in
phase) => the coefficients of the cos terms and sin terms must be
the same on either side of an equality

cos( ) sin( ) 15cos( ) 8sin( ) 2cos( )

17 8and

A t B t t t t

A B

       

   

Example:

ADDING SINUSOIDS OF DIFFERENT MAGNITUDES &ADDING SINUSOIDS OF DIFFERENT MAGNITUDES &
PHASESPHASES (2)

cos( )A graphical way to think about A t 


cos( )A tcos( )A t

sin( )A t

sin( )A t

We can use this to find the magnitude and phase of a variable that is
expressed in terms of sin(t) and cos(t)

Example: find A and  given that A cos(t+)= 4sin(t)+3cos(t)

2 2 1 44 3 5 tan 53.1
3

Solution: A       
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SHORTHAND NOTATION FOR ADDING SINUSOIDS OF DIFFERENTSHORTHAND NOTATION FOR ADDING SINUSOIDS OF DIFFERENT
MAGNITUDES & PHASESMAGNITUDES & PHASES

Since sinusoids have a magnitude and phase, we can add them like
vectors, which have a magnitude and direction

Notation: in steady-state analysis, we assume that all currents and
voltages are varying sinusoidally, so we do not have to keep writing
the sin(t) and cos(t) terms (also, they will cancel algebraically
since they will appear on both sides of circuit equations)

As with the plot on the previous slide, we will put the cos(t)
component on the x-axis and the sin(t) component on the y-axis

To make our notation more compact, we will place use a “-j” to
represent sin(t) and a “1” to represent the cos(t) terms

cos( 60 ) cos( ) cos(60 ) sin( )sin(60 )

0.5 0.866

t t t

j

       

 

Thus, the previous example can be written as:

SUMMINGSUMMING SINUSIODSSINUSIODS EXAMPLESEXAMPLES

2cos( 30 ), 3cos( 50 ) cos( ,)If and

calcul tea

A t B t C t

A B C

         

 

Rewriting in shorthand notation:

2cos( 30 ) 2cos(30 ) 2sin(30 ) 1.732 1

3cos( 50 ) 3cos( 50 ) 3sin( 50 ) 1.928 2.298

cos( ) cos(0 ) sin(0 ) 1 0

A t j j

B t j j

C t j j







        

             

      

Summing the components separately, as in vector addition:

(1.732 1.928 1) (1 2.298 0) 0 804 3 298A B .j .C j        

We can convert this into a magnitude and phase:
2 2 -10 804 3 298 3.4 tan (3.298 / 0.804) 76.3Magnitude Phase. .     

3.4 cos( 76 )We can write this as: A B C t    

The above notation is called Complex Number Notation
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RETURNING TO OUR CAPACITOR CIRCUITRETURNING TO OUR CAPACITOR CIRCUIT
V

S
co

s(


t)

cos( ) cos( ) cos( 90 )
0

1
x S xv t V t v t

R
C

    



    
 

Using our new notation, we can write this as:

vx

1

1
Gain

j RC




If we define gain as being vx/Vs

Note that this gain introduces a phase shift that is a function of
frequency. For many circuits, gain will have a magnitude and phase.

After applying KCL, we came up with:

 0 1
1

x S x
x S

v V v
j v j RC V

R
C






    

Gives the expected gain of 1 at =0

NUMERICAL EXAMPLENUMERICAL EXAMPLE

If R=10K and C=50 pF (pf = 10-12 Farads), what is the
gain of our low-pass filter at 318 KHz?

   5 4 11

1 1 1

1 11 2 3.18 10 10 5 10
Gain

j RC jj  
  

   

2 2 1

1 1 1 1 45

11 2 45 21 1 tan
1

0.707 45 (Polar Form)

j 

 
  

   

  

1 1 1
10

10
Note just as A

AA A






  


The gain of our low-pass filter is 0.707 at 318 KHz, and it
introduces a phase shift of -45 between the input and
output at that frequency.
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IMPEDANCES IN SERIESIMPEDANCES IN SERIES
Just as resistances add when in series, impedances add when in
series

Zin
C1

C2
1 2

1 2

1 1
in C CZ Z Z

j C j C 
   

Example: Find the net capacitance for 2 capacitors in series as shown
above.

1 2

1 1 1
in

in

Z
j C j C j C  

  

Multiply both sides by j

1 2

1 1 1

inC C C
  Rearrange to find Cin

1 2

1

1 1inC

C C





Unlike resistors, capacitance does not add when in series although the
impedance of capacitors does add

Impedances act in parallel in the same way as resistance acts in
parallel.

C1 C2Zin

in
in

in

V
Z

i


 1 2

1

j C C




Capacitance adds in parallel: Cin=C1+C2

1 2

1

1 1

1 1

j C j C 




   
   
   

1 2

in

C C

V

i i




1 2

in

in in

C C

V

V V

Z Z





1 2

1

1 1

C CZ Z


1

1
Note: A

A


 
 
 


